Conductive organic polymers are used in organic electronic devices and specifically in organic-based light-emitting diodes (OLEDs). It is expected that by controlling the spin of the electrons that are injected from and into these devices, their energy efficiency will increase significantly. However, it is commonly thought that this would require introducing ferromagnets into the device, which represents a technological challenge. We present data indicating that electron transport through a chiral conductive polymer is highly spin dependent; hence, the polymers themselves can serve as a spin filter and in principle, this may allow the operation of spin-OLED without any magnetic component