We conducted an intensive field campaign at the summit of Mt. Tai (36.26° N, 117.11° E, 1534 m above sea level), Shandong Province, located at the center of central East China, during the period 28 May to 30 June 2006, to study seasonal maxima of regional air pollution with respect to ozone (O3) and aerosols. The specific objectives, campaign design, and major findings are summarized. High concentrations of O3 and its precursors, and aerosols, were detected and studied in the context of annual variations. Most importantly, we identified that emissions from regional-scale open crop residue burning after the harvesting of winter wheat, together with photochemical aging, strongly increased the concentrations of O3, aerosols, and primary pollutants in this month of year. Studies of in situ photochemical activity, regional source attribution of O3, O3–aerosol interactions, validation of satellite observations of tropospheric NO2, behaviors of volatile organic compounds and organic/inorganic aerosol species, loss rates of black carbon (BC), and instrument inter-comparisons are also summarized. The observed BC levels must have a strong impact on the regional climate