Recent studies in cell lines and genetically engineered mice have demonstrated that cytosolic double-stranded (ds) DNA could activate dendritic cells (DCs) to become effector antigen presenting cells. Recognition of DNA might be a major factor in antimicrobial immune responses against cytosolic pathogens and also in human autoimmune diseases such as systemic lupus erythematosus. However, the role of cytosolic dsDNA in human DC activation and its effects on effector T and B cells are still elusive. Here we demonstrate that intracellular dsDNA is a potent activator of human monocyte-derived DCs, as well as primary DCs. Activation by dsDNA depends on NF-κB activation, partially on the adaptor molecule IPS-1 and the novel cytosolic dsDNA receptor IFI16, but not on the previously recognized dsDNA sentinels AIM2, DAI, RNA polymerase III or HMGBs. More importantly, we report for the first time that human dsDNA-activated DCs, rather than LPS- or inflammatory cytokine cocktail-activated DCs, represent the most potent inducers of naïve CD4+ T cells to promote Th1-type cytokine production and to generate CD4+ and CD8+ cytotoxic T cells. dsDNA-, but not LPS- or cocktail-activated DCs induce B cells to produce complement fixing IgG1 and IgG3 antibodies. We propose that cytosolic dsDNA represents a novel, more effective approach to generate DCs to enhance vaccine effectiveness in reprogramming the adaptive immune system to eradicate infectious agents, autoimmunity, allergy and cancer.