Countries around the world have observed reduced infections from the SARS-CoV-2 virus, that causes COVID-19 illness, primarily due to non-pharmaceutical interventions (NPIs) such as lockdowns and social distancing measures designed to limit physical proximity between people. However, economies and societal interactions require restarting, and so lockdowns cannot continue indefinitely. Therefore, much hope is placed in using newly developed vaccines as a route back to normality, but this raises key questions about how they are shared. There are also emerging questions regarding travel. For instance, international business and trade necessitates at least some in-person exchanges, alongside restarting travel also for tourist purposes. By utilising a Susceptible-Infected-Recovered-Vaccinated (SIRV) mathematical model, we simulate the populations of two nations in parallel, where the first nation produces a vaccine and decides the extent to which it is shared with the second. Overlaying our mathematical structure is the virus-related effects of travel between the two nations. We find that even with extensive travel, nation one minimises its total number of deaths by simply retaining vaccines, aiming for full inoculation as fast as possible, suggesting that the risks posed by travel can be mitigated by rapidly vaccinating its own population. If instead we consider the total deaths i.e., sum of deaths of both nations, then such a policy of not sharing by nation one until full vaccination is highly sub-optimal. A policy of low initial sharing causes many more deaths in nation two than lives saved in nation one, raising important ethical issues. This imbalance in the health impact of vaccination provision must be considered as some countries begin to approach the point of extensive vaccination, while others lack the resources to do so.