The primary visual cortex (V1) in individuals born blind is engaged in a wide spectrum of tasks and sensory modalities, including audition, touch, language, and memory. This widespread involvement raises questions regarding the constancy of its role and whether it might exhibit flexibility in its function over time, connecting to diverse network functions in response to task-specific demands. This would suggest that reorganized V1 takes on a role similar to cognitive multiple-demand system regions. Alternatively, it is possible that the varying patterns of plasticity observed in the blind V1 can be attributed to individual factors, whereby different blind individuals recruit V1 for different functions, highlighting the immense idiosyncrasy of plasticity. In support of this second account, we have recently shown that V1 functional connectivity varies greatly across blind individuals. But do these represent stable individual patterns of plasticity or merely instantaneous changes, for a multiple-demand system now inhabiting V1? Here we tested if individual connectivity patterns from the visual cortex of blind individuals are stable over time. We show that over two years, fMRI functional connectivity from the primary visual cortex is unique and highly stable in a small sample of repeatedly sampled congenitally blind individuals. Further, using multivoxel pattern analysis, we demonstrate that the unique reorganization patterns of these individuals allow decoding of participant identity. Together with recent evidence for substantial individual differences in visual cortex connectivity, this indicates there may be a consistent role for the visual cortex in blindness, which may differ for each individual. Further, it suggests that the variability in visual reorganization in blindness across individuals could be used to seek stable neuromarkers for sight rehabilitation and assistive approaches.