Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Lipids perform a diverse and unique array of functions in insects. Lipases are key enzymes in lipid metabolism, and their metabolic products are crucial for development and reproduction of insects. Here, a total of 110 lipase genes were identified in the genome of Spodoptera frugiperda. Cluster analysis indicated that neutral lipases constitute the majority of lipases. Tissue expression profile analysis displayed that most lipase genes were highly expressed in the larval gut of S. frugiperda. Some lipases exhibited a diet‐specific expression pattern, which implied their roles in host adaptation. Key domain analysis proved that none of the neutral lipases highly expressed in the gut has an integrated lid domain, while most lipases highly expressed in the fat body contained both the integrated lid domain and β9 loop, indicating the activity loss of neutral lipases in guts. The assay of triacylglycerol (TAG) hydrolytic activity confirmed that the gut had the lowest activity when compared to that of fat body and epidermis. Interestingly, the opposite TAG hydrolytic activity trends across mating were observed between adult males and females, implying that lipase played different roles in the reproduction of both sexes. In conclusion, neutral lipases lost TAG hydrolytic activity in S. frugiperda guts, but retained the activity in fat body. Neutral lipases would play vital roles in many physiological processes in insects, especially in insect reproduction, which provides palpable targets for novel insecticide development to control insect population growth.
Lipids perform a diverse and unique array of functions in insects. Lipases are key enzymes in lipid metabolism, and their metabolic products are crucial for development and reproduction of insects. Here, a total of 110 lipase genes were identified in the genome of Spodoptera frugiperda. Cluster analysis indicated that neutral lipases constitute the majority of lipases. Tissue expression profile analysis displayed that most lipase genes were highly expressed in the larval gut of S. frugiperda. Some lipases exhibited a diet‐specific expression pattern, which implied their roles in host adaptation. Key domain analysis proved that none of the neutral lipases highly expressed in the gut has an integrated lid domain, while most lipases highly expressed in the fat body contained both the integrated lid domain and β9 loop, indicating the activity loss of neutral lipases in guts. The assay of triacylglycerol (TAG) hydrolytic activity confirmed that the gut had the lowest activity when compared to that of fat body and epidermis. Interestingly, the opposite TAG hydrolytic activity trends across mating were observed between adult males and females, implying that lipase played different roles in the reproduction of both sexes. In conclusion, neutral lipases lost TAG hydrolytic activity in S. frugiperda guts, but retained the activity in fat body. Neutral lipases would play vital roles in many physiological processes in insects, especially in insect reproduction, which provides palpable targets for novel insecticide development to control insect population growth.
Both RNA and protein play important roles in the process of gene expression and regulation, and it has been widely discussed that the interactions between RNA and protein affect gene transcription, translation efficiency, and post-translational modification. As an important class of proteins, RNA-binding proteins bind to RNA and affect gene expression in various ways. Here, we review the structural and functional properties of RNA-binding proteins and illustrate the specific modes of interactions between RNA and RNA-binding proteins and describe the involvement of some representative RNA-binding protein families in this network of action. Furthermore, we also explore the association that exists between RNA-binding proteins and the onset of diseases, as well as their potential in terms of serving as a therapeutic tool for the treatment of diseases. The in-depth exploration of the interactions between RNA and RNA-binding proteins reveals the dynamic process of gene expression and regulation, as well as offering valuable insights to advance the progress in the dissection of disease mechanisms and research and discovery of drugs, which promote the development of molecular biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.