A Native American-Indian female presenting with anemia and thrombocytosis was diagnosed with myelodysplastic syndrome (MDS, refractory anemia). Over the course of 5 years she developed cytopenias and periods of leukocytosis with normal bone marrow (BM) blast counts, features of an unclassifiable MDS/MPS syndrome. The patient ultimately progressed to acute myelogenous leukemia (AML, FAB M2) and had a normal karyotype throughout her course. The episodes of leukocytosis were associated with infectious complications. Transformation to AML was characterized by a BM blast percentage of 49%. Peripheral blood and BM samples were obtained for serum protein analysis and gene expression profiling (GEP) to elucidate her disease process. An ELISA assay of the serum analyzed~80 cytokines, which demonstrated that hepatocyte growth factor/scatter factor and insulin-like growth factor binding protein 1 were markedly elevated compared to normal. GEP demonstrated a unique ''tumor molecular profile,'' which included overexpression of oncogenes (HOXA9, N-MYC, KOC1), proliferative genes (PAWR, DLG5, AKR1C3), invasion/metastatic genes (FN1, N-CAM-1, ITGB5), pro-angiogenesis genes (c-Kit), and down regulation of tumor suppressor genes (SUI1, BARD1) and anti-apoptotic genes (PGLYRP, SERPINB2, MPO). Hence, a biomics approach has provided insight into elucidating disease mechanisms, molecular prognostic factors, and discovery of novel targets for therapeutic intervention. Am. J. Hematol. 81:779-786, 2006. V V C 2006 Wiley-Liss, Inc.