Heart development is a dynamic process modulated by various extracellular and intracellular cues. Cardiac progenitors in vertebrates such as the zebrafish, migrate over to the midline after differentiation from the epiblast (Bakkers, 2011; Rosenthal & Harvey, 2010; Stainier et al., 1996; Trinh & Stainier, 2004). These progenitors form a cardiac disc at the midline which elongates into the linear heart tube. The differentiation and migration of cardiac precursors is modulated by signaling interactions between cardiac precursor cells and their extracellular environment known as the Extracellular Matrix (ECM). Studies have shown that Cell-ECM interactions play a crucial role in sculpting the heart during early morphogenic events (Davis CL, 1924; Männer & Yelbuz, 2019; Rosenthal & Harvey, 2010). One key factor to these processes is the presence of a specialized ECM known as the Basement Membrane (BM). Extracellular basement membrane proteins such as Fibronectin have been shown to modulate these very early migration processes of the cardiomyocyte progenitors (Trinh & Stainier, 2004). As the heart develops further, the linear heart tube is composed of myocardial cells with an inner endothelial cell lining separated by a layer of thick jelly like substance called the cardiac jelly (Barry A, 1948; Davis CL, 1924; Little et al., 1989). The cardiac jelly also called the cardiac basement membrane, has been shown to regulate distinct developmental events during cardiogenesis. This early CJ contains components of the basal lamina such as laminins, fibronectin, hyaluronan as well as non-fibrillar collagens such as Collagen IV (Little et al., 1989). In this study, I aimed to identify ECM molecules of the Basement Membrane in the heart and identify their role in the modulation of cardiac development and regeneration using the zebrafish as my model organism. I identified genes belonging to the Zebrafish Matrisome expressed during cardiac developmental and regeneration and performed CRISPR/Cas9 sgRNA mediated mutagenesis. I also developed overexpression tools for these genes. Agrinp168 mutants exhibited no obvious gross morphology defects during cardiac development and were adult viable. Adult mutants exhibited reduced cardiomyocyte proliferation, but no significant difference in cardiomyocyte dedifferentiation post cardiac cryoinjury. Decorin overexpression through mRNA injections led to increased myocardial wall thickness and DN dcn overexpression through mRNA injections led to loss of cardiac looping during early development. Mutants for Small Leucine Rich Proteoglycan (SLRP) prelp generated using CRISPR/Cas9 mutagenesis exhibited cardiovascular defects. Close observation of prelp mutant hearts revealed a reduced heart rate and impaired fractional shortening of the ventricle. prelp mutants exhibited an enlarged atrium at 48 hpf and 72 hpf as well as a reduced ventricle size at 72 hpf. Chamber size in the mutant hearts were enlarged irrespective of contractility of the heart. Mutants showed an increased number of Atrial cardiomyocytes, but no change in cell size. On the molecular level, extracellular Laminin localization was disrupted in prelp mutants along with an increase in thickness and volume of the cardiac HA in the CJ suggesting a potential compensatory role, or retention of immaturity of the cardiac jelly in the prelp mutants. Transcriptomics analysis on the prelp mutant hearts revealed downregulation of ECM organization and ECM-Receptor interaction processes in the mutants. Gene Ontology analysis on prelp mutants hearts transcriptome revealed increased MAPK signaling. Interestingly, genes related to degradation of cardiac HA and maturation of cardiac jelly were downregulated, and genes related to epithelial identity of cardiomyocytes were upregulated. Analysis of the mutant hearts at single cell resolution revealed increased number of mutants exhibiting rounded up cardiomyocytes and loss of apical Podocalyxin. Truncated forms of prelp were generated to identify domain specific roles for Prelp, and reintroduction of N-terminal truncated Prelp into the mutants rescued the basal lamina localization and cardiac jelly volume phenotypes. Myocardium specific re-establishment of prelp expression revealed a marked rescue of the mutant cardiovascular phenotype suggesting that tissue specific expression of prelp is not required so long as Prelp is secreted into the CJ. With these data, I’ve elucidated the role of ECM SLRPs in modulation of cardiac chamber morphogenesis process and regeneration of the heart.