Both the chemistry and size of a material formed in vivo, or an implanted biomaterial, can alter the in vivo host response. Within the size range covered within this review, over 1 μm, chemistry is only important if the solid material is unstable and leeching small molecules. The macrophage activity and the resultant inflammatory response, however, are related to the size of the solid material. The premise of this review is that differences in size of the solid material, in different cases, can be the reason why there is some individual-to-individual variation in response. Specifically, the inflammatory response is enhanced when the size is between 1–50 μm. This will be looked at for three configurations: spherical particulate (silicone oil or gel from breast implants), elongated particulate (monosodium urate [MSU] crystals in gout or in kidney stones), and fibers (e.g., polyester used in fabric implants). These specific examples were selected because many still believe that the clinical outcome for each is controlled by the surface chemistry, when in fact it is the size. In each case, specific studies will be highlighted to either show a mechanism for creating different sizes and therefore a differential biological response (first three) or how changing the size and shape (diameter and spacing of fibers, in this example) can affect the response and can help explain the different responses to fabric implants found in vivo within the 1–50 μm size range. It was found that polyester fibers under 70 μm had a significant increase in macrophage response. Further, it was found that compounds found in synovial fluid could limit MSU crystal size. In addition, it was shown that plasma with low triglyceride levels emulsifies silicone oils to a greater extent than plasma with higher triglyceride levels. Therefore, in three cases it appears that differences in the inflammatory response between individuals and between different implants could be explained just by the size of the material formed or implanted.