In the present work Cr3C2-NiCr powder containing Al particles was deposited on ductile cast iron with high-velocity oxy-fuel (HVOF) thermal spray coating technique. An investigation was conducted to determine the role of Al particles in the Cr3C2-NiCr coating produced with HVOF technique on microstructure, mechanical and wear properties in a system Cr2C3-NiCr coating/ductile cast iron. The microstructure of the HVOF-sprayed Cr3C2-NiCr+Al coating was characterized by light microscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy (EDS). Microstructure analysis reveals the formation of coating with low porosity, good adhesion to the substrate and dense structure with irregularly shaped particles of Al arranged in strips and finely fragmented Cr3C2 particles embedded in a nanocrystalline Ni-Cr alloy matrix. In addition, the results were discussed in reference to examination of bending strength considering cracking and delamination in the system of (Cr3C2-NiCr+Al)/ductile cast iron as well as microhardness and wear resistance of the coating. It was found that the addition of Al particles significantly increased resistance to cracking and wear behaviour in the studied system.