BackgroundSmall dense low-density lipoprotein (sdLDL), which has a small LDL particle size with a greater susceptibility to oxidation, is considered a risk marker for cardiovascular disease (CVD). The diacron reactive oxygen metabolites (d-ROMs) have recently been introduced as a clinically useful oxidative stress-related marker. Physical activity can reduce the CVD risk. The present study investigated the correlation between the changes of the mean LDL particle size and the oxidative stress status, as assessed by the d-ROMs, in a physical activity intervention in hyperlipidemic subjects.MethodsWe performed a 6-month intervention study of 30 hyperlipidemic subjects (12 male/18 female, mean age 64 years), focusing on a moderate physical activity increase. The clinical data, including the atherosclerotic risk factors besides the mean LDL particle size measured with the gel electrophoresis and the d-ROMs, were evaluated pre- and post-intervention.ResultsThe mean LDL particle size was significantly larger in the post-intervention than in the pre-intervention evaluation (26.9 ± 0.3 (SD) vs. 27.1 ± 0.4 nm, P < 0.01), while the d-ROMs levels were significantly reduced in the post-intervention period compared to those at pre-intervention (319 ± 77 vs. 290 ± 73 U. Carr., P < 0.05). A stepwise multiple regression analysis revealed that there was an independent, significant and inverse correlation between the pre- and post-intervention changes of the d-ROMs and the mean LDL particle size (β = -0.55, P < 0.01).ConclusionsThe intervention study suggests that sdLDL and oxidative stress can concomitantly affect the risk of developing CVD and that both factors can improve by even a moderate increase in physical activity among hyperlipidemic subjects.