Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We integrate new and previous stratigraphic and petrographic data for the mid-Turonian Codell Sandstone to interpret its provenance, depositional characteristics, and environments. Our focus is on sedimentologic, X-ray diffraction, and X-ray fluorescence analyses of cores and thin sections spread throughout the Denver Basin, augmented by interpretation and correlation of well logs, isopach maps, outcrops, and provenance data. Although we treat the Codell as a single mappable unit, it actually consists of two geographically disjunct sandstone packages separated by a southwest-northeast-trending gap, the NoCoZo, short for No Codell Zone. The Codell is everywhere capped by a significant unconformity and across much of the northern Denver Basin rests unconformably on the underlying shales of the Carlile Shale. In the southern Denver Basin, the Codell commonly contains two parasequences, each of which becomes less muddy upward. Biostratigraphic and geochonologic data suggest that the unit represents deposition over a relatively brief time, spanning ~0.4 Ma from ~91.7 to ~91.3 Ma. The Codell is predominantly a thin (<50 ft) sheet-like package of pervasively bioturbated coarse siltstone and very fine-grained sandstone dominated by quartz and chert grains 50 to 100 μm in diameter. The unit is more phosphatic than the underlying members of the Carlile Shale, and its grain size coarsens to medium-grained in the northern part of the basin. An unusual aspect of the Codell across our study area is the generally excellent grain sorting despite the presence of an intermixed clay matrix. This duality of well sorted grains in a detrital clay matrix is due to the bioturbation that dominates the unit. Such burrowing created a textural inversion that obscures most of the unit’s primary sedimentary structures, except for thin intervals dominated by interlaminated silty shale and very fine sandstone. A relatively widespread and unburrowed example of this bedded facies is preserved in a thin (<10 ft) interval that extends across most of the northern Denver Basin where it is informally called the middle Codell bedded to laminated lithofacies. Sparse beds with hummocky or swaley cross-stratified and ripple cross-laminated fine-grained sandstone are present locally in this bedded facies. We hypothesize that Codell sediments were derived from a major deltaic source extending into the Western Interior Seaway from northwestern Wyoming, and that the Codell was deposited and reworked southward on the relatively flat floor of the Seaway by waxing and waning shelf currents as well as storms and waves. Codell sediments were spread across an area of more than 100,000 mi2 in this epeiric shelf system that spans eastern Colorado, southeastern Wyoming, western Kansas, parts of Nebraska and beyond.
We integrate new and previous stratigraphic and petrographic data for the mid-Turonian Codell Sandstone to interpret its provenance, depositional characteristics, and environments. Our focus is on sedimentologic, X-ray diffraction, and X-ray fluorescence analyses of cores and thin sections spread throughout the Denver Basin, augmented by interpretation and correlation of well logs, isopach maps, outcrops, and provenance data. Although we treat the Codell as a single mappable unit, it actually consists of two geographically disjunct sandstone packages separated by a southwest-northeast-trending gap, the NoCoZo, short for No Codell Zone. The Codell is everywhere capped by a significant unconformity and across much of the northern Denver Basin rests unconformably on the underlying shales of the Carlile Shale. In the southern Denver Basin, the Codell commonly contains two parasequences, each of which becomes less muddy upward. Biostratigraphic and geochonologic data suggest that the unit represents deposition over a relatively brief time, spanning ~0.4 Ma from ~91.7 to ~91.3 Ma. The Codell is predominantly a thin (<50 ft) sheet-like package of pervasively bioturbated coarse siltstone and very fine-grained sandstone dominated by quartz and chert grains 50 to 100 μm in diameter. The unit is more phosphatic than the underlying members of the Carlile Shale, and its grain size coarsens to medium-grained in the northern part of the basin. An unusual aspect of the Codell across our study area is the generally excellent grain sorting despite the presence of an intermixed clay matrix. This duality of well sorted grains in a detrital clay matrix is due to the bioturbation that dominates the unit. Such burrowing created a textural inversion that obscures most of the unit’s primary sedimentary structures, except for thin intervals dominated by interlaminated silty shale and very fine sandstone. A relatively widespread and unburrowed example of this bedded facies is preserved in a thin (<10 ft) interval that extends across most of the northern Denver Basin where it is informally called the middle Codell bedded to laminated lithofacies. Sparse beds with hummocky or swaley cross-stratified and ripple cross-laminated fine-grained sandstone are present locally in this bedded facies. We hypothesize that Codell sediments were derived from a major deltaic source extending into the Western Interior Seaway from northwestern Wyoming, and that the Codell was deposited and reworked southward on the relatively flat floor of the Seaway by waxing and waning shelf currents as well as storms and waves. Codell sediments were spread across an area of more than 100,000 mi2 in this epeiric shelf system that spans eastern Colorado, southeastern Wyoming, western Kansas, parts of Nebraska and beyond.
Core data from five key wells spanning the Denver Basin were tied to wireline log data and used to interpret the distribution of the Middle Turonian Codell Sandstone Member of the Carlile Formation across the Denver Basin. The character of the Codell’s upper contact is sharp with a localized top-down truncation across the basin, which is consistent with an associated unconformity surface. In contrast, the Codell’s lower contact varies from being gradational in most of the southern Denver Basin to being unconformable in the northern basin. Log correlations reveal that the Codell is absent within an elongate northeast-trending swath up to 125 miles wide in northeastern Colorado. This elongate gap is herein referred to as the ‘No Codell Zone’ abbreviated as NoCoZo. Hypotheses to explain the absence of the Codell Sandstone in the NoCoZo include a lateral facies change from sandstone to shale, non-deposition of Codell-equivalent sediments across this area, post-depositional erosion, or a combination of these processes. Correlation of wireline logs across the northern and southern limits of the NoCoZo, combined with outcrop and core observations, suggest top-down erosion of the Codell increasing into the NoCoZo. However, the overlying Fort Hays Limestone is laterally continuous and has a relatively consistent thickness across the NoCoZo, suggesting two tenable hypotheses: 1) The NoCoZo represents an area of post-Codell erosion due to short-lived growth of a broad, low relief uplift that was no longer active during Fort Hays deposition; or 2) A stepped sea level fall and forced regression resulting in non-deposition of the Codell over this broad swath. North of the NoCoZo, the Codell thickens northward to more than 40 ft into adjacent parts of Wyoming and Nebraska. In this northern area, the Codell has two main lithofacies in three laterally correlative zones, in ascending order: a lower bioturbated siltstone to very fine-grained sandstone ranging from 2 to 20 feet thick, a middle 2 to 10-foot thick laminated to bedded siltstone to fine-grained sandstone, and an upper 5 to 20-foot thick bioturbated siltstone to very fine-grained sandstone. Southeast of the NoCoZo the Codell thickens to as much as 80 feet in an east-trending belt from Pueblo, Colorado, into west central Kansas. The southern Codell can be divided into two coarsening upward parasequences, from a basal muddy coarse siltstones to very fine-grained sandstones. The siltstones and sandstones in the southern Codell are mostly bioturbated with locally developed bedded facies at the top.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.