Abstract. CD44 is a transmembrane receptor for hyaluronic acid. CD44 pre-mRNA contains 19 exons, 9 of which are alternatively spliced. Among the CD44 spliced variants, the v4-7 variant, one of the v6 exon-containing isoforms that contains variable exon 4, 5, 6 and 7, confers metastatic potential to nonmetastatic cells. Splicing of CD44 and the function of CD44 isoforms are different in breast cancer cells. hnRNP A1 is a ubiquitously expressed protein with an inhibitory function in pre-mRNA splicing. We showed that CD44v6 isoform, which includes all of the v6-containing mRNA isoforms, had the highest expression level in non-metatatic breast cancer cells (MCF7) when compared to the level in metastatic breast cancer cells (MDA-MB-231) and normal breast cells (MCF10A). Furthermore we showed that hnRNP A1 knockdown regulated splicing of CD44 differently in breast cancer cells. We showed here that CD44 isoform expression is completely different in MDA-MB-231 cells than that in MCF7 and MCF10A cells, whereas MCF7 and MCF10A cells had a similar expression pattern of CD44 isoforms. RT-PCR analysis of CD44v6 showed that MCF7 and MCF10A cells predominantly expressed the c5v6v7v8v9v10c6 isoform. However, in addition to this isoform, MDA-MB-231 cells also expressed the c5v6v8v9v10c6 and c5v6c6 isoforms. We also found that knockdown of hnRNP A1 significantly reduced the expression of c5v6v7v8v9v10c6 and c5v6v8v9v10c6, and promoted the expression of c5v6c6. hnRNP A1 knockdown significantly induced cell death. In addition, hnRNP A1 knockdown induced a decrease in cell invasion in the MDA-MB-231 cells. Our results indicate that the knockdown of hnRNP A1 has a specific function on the splicing of CD44 in breast cancer cells.