Background: Cyclophilins harbor ill-defined chaperone and prolyl isomerase activities toward physiological substrates. Results: Nonoverlapping chaperone or prolyl isomerase activity loss of Ran-binding protein 2 (Ranbp2) cyclophilin domain triggers unique impairments of proteostasis in distinct cell types and ubiquitin-proteasome system. Conclusion: Ranbp2 cyclophilin subdomains present discriminating physiological activities toward substrates or regulation of ubiquitin-proteasome system. Significance: Ranbp2-mediated mechanistic links in proteostasis with physiological and therapeutic relevance are uncovered.The immunophilins, cyclophilins, catalyze peptidyl cis-trans prolyl-isomerization (PPIase), a rate-limiting step in protein folding and a conformational switch in protein function. Cyclophilins are also chaperones. Noncatalytic mutations affecting the only cyclophilins with known but distinct physiological substrates, the Drosophila NinaA and its mammalian homolog, cyclophilin-B, impair opsin biogenesis and cause osteogenesis imperfecta, respectively. However, the physiological roles and substrates of most cyclophilins remain unknown. It is also unclear if PPIase and chaperone activities reflect distinct cyclophilin properties. To elucidate the physiological idiosyncrasy stemming from potential cyclophilin functions, we generated mice lacking endogenous Ran-binding protein-2 (Ranbp2) and expressing bacterial artificial chromosomes of Ranbp2 with impaired C-terminal chaperone and with (Tg-Ranbp2 WT-HA ) or without PPIase activities (Tg-Ranbp2 R2944A-HA ). The transgenic lines exhibit unique effects in proteostasis. Either line presents selective deficits in M-opsin biogenesis with its accumulation and aggregation in cone photoreceptors but without proteostatic impairment of two novel Ranbp2 cyclophilin partners, the cytokine-responsive effectors, STAT3/STAT5. Peptidyl cis-trans-prolyl isomerization is a rate-limiting step in protein folding (1-3). The catalysis of the cis-trans interconversion of the peptidyl-prolyl isomers is catalyzed by peptidylprolyl cis-trans isomerases (PPIase) 5 (4 -6). PPIases compose three families of structurally unrelated proteins, the cyclophilins (CyP), FK506-binding proteins (FKBP), and parvulins (7). * This work was supported, in whole or in part, by National Institutes of Health Grants EY019492, GM083165, and GM083165-03S1 (to P. A. F.), 2P30-EY005722 (to Duke University Eye Center), and 5P30NS061789 (to Duke Neurotransgenic Laboratory). This work was also supported by the Foundation Fighting CyPs and FKBPs are designated also as immunophilins, because they mediate immunosuppression (8,9). This effect is achieved by a gain-of-function mechanism upon binding of the immunosuppressive metabolites, cyclosporin A (CsA) or FK506, to the PPIase active site and formation of a ternary complex with the serine/threonine phosphatase, calcineurin, whose sequestration and inhibition prevents the dephosphorylation and activation of the nuclear factor for activation of T-cells (9 -12). Howe...