Background
Chronic myeloid leukaemia (CML) is a haematological cancer featured by the presence of BCR‐ABL fusion protein with abnormal tyrosine kinase activation. Classical tyrosine kinase inhibitor (TKI)‐based therapies are available to patients with CML. However, acquired resistance to TKI has been a challenging obstacle, especially stubborn T315I mutation is the most common cause. Therefore, it is especially urgent to find more effective targets to overcome TKI resistance induced by BCR‐ABLT315I. Proteasomal deubiquitinases (USP14 and UCHL5) have fundamental roles in the ubiquitin‐proteasome system and possess multiple functions during cancer progression.
Methods
The human peripheral blood mononuclear cells were collected to measure the mRNA expression of USP14 and UCHL5, as well as to detect the toxicity effect of b‐AP15. We explored the effect of b‐AP15 on the activity of proteasomal deubiquitinases. We detected the effects of b‐AP15 on BCR‐ABLWT and BCR‐ABLT315I CML cells in vitro and in the subcutaneous tumour model. We knocked down USP14 and/or UCHL5 by shRNA to explore whether these proteasomal deubiquitinases are required for cell proliferation of CML.
Results
In this study, we found that increased expression of the proteasomal deubiquitinase USP14 and UCHL5 in primary cancer cells from CML patients compared to healthy donors. b‐AP15, an inhibitor of USP14 and UCHL5, exhibited potent tumour‐killing activity in BCR‐ABLWT and BCR‐ABLT315I CML cell lines, as well as in CML xenografts and primary CML cells. Mechanically, pharmacological or genetic inhibition of USP14 and UCHL5 induced cell apoptosis and decreased the protein level of BCR‐ABL in CML cells expressing BCR‐ABLWT and BCR‐ABLT315I. Moreover, b‐AP15 synergistically enhanced the cytotoxic effect caused by TKI imatinib in BCR‐ABLWT and BCR‐ABLT315I CML cells.
Conclusion
Collectively, our results demonstrate targeting USP14 and UCHL5 as a potential strategy for combating TKI resistance in CML.