2021
DOI: 10.1177/02783649211004959
|View full text |Cite
|
Sign up to set email alerts
|

The UMA-SAR Dataset: Multimodal data collection from a ground vehicle during outdoor disaster response training exercises

Abstract: This article presents a collection of multimodal raw data captured from a manned all-terrain vehicle in the course of two realistic outdoor search and rescue (SAR) exercises for actual emergency responders conducted in Málaga (Spain) in 2018 and 2019: the UMA-SAR dataset. The sensor suite, applicable to unmanned ground vehicles (UGVs), consisted of overlapping visible light (RGB) and thermal infrared (TIR) forward-looking monocular cameras, a Velodyne HDL-32 three-dimensional (3D) lidar, as well as an inertial… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
14
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
2
2

Relationship

3
5

Authors

Journals

citations
Cited by 19 publications
(16 citation statements)
references
References 37 publications
0
14
0
2
Order By: Relevance
“…En un trabajo previo hemos comprobado la viabilidad de utilizar un re-entrenamiento de imágenes TIR sobre una red YOLO [5]. Resulta interesante estudiar el rendimiento de la red RGB entrenada en este trabajo para detectar objetos en imágenes TIR del dataset UMA-SAR [14]. Los resultados obtenidos se ofrecen en la Tabla 11, donde no se ha incluido la clase víctima ya que su presencia no es representativa en en las imágenes de prueba.…”
Section: Resultsunclassified
See 1 more Smart Citation
“…En un trabajo previo hemos comprobado la viabilidad de utilizar un re-entrenamiento de imágenes TIR sobre una red YOLO [5]. Resulta interesante estudiar el rendimiento de la red RGB entrenada en este trabajo para detectar objetos en imágenes TIR del dataset UMA-SAR [14]. Los resultados obtenidos se ofrecen en la Tabla 11, donde no se ha incluido la clase víctima ya que su presencia no es representativa en en las imágenes de prueba.…”
Section: Resultsunclassified
“…Para el entrenamiento hemos utilizado nuestro conjunto de datos UMA-SAR Dataset [14], disponible públicamente en www.uma.es/robotics-andmechatronics/sar-datasets.…”
Section: El Dataset Uma-sarunclassified
“…Over 150 people from these services participated in the edition of 2021. These annual exercises provide an effective framework for the testing and assessing new technologies with the cooperation of actual responders [ 41 , 64 ].…”
Section: Methodsmentioning
confidence: 99%
“…In addition to smartphones, other equipment on board robots, such as different kinds of cameras, LiDARs or GPS, could be used to communicate other sensory information via ROS [ 41 ]. Conversely, the X-IoCA architecture makes it possible to transmit this heavy information through the WAN, in real time, thanks to the 5G technology characteristics [ 42 , 43 , 44 ] that support it.…”
Section: Sensory and Communication System Architecture: X-iocamentioning
confidence: 99%
“…Compared with video and image action recognition, skeletal point data is more robust to lighting conditions, viewpoint transformations, and changes in human form. Moreover, in complex pure action recognition (action recognition without the influence of other objects), skeleton point data has an advantage that video data cannot match ( Morales et al, 2021 ). Regarding the action recognition of skeletal points, the traditional method of manually designed features usually represents the motion of several human skeletal nodes as the action of the whole human body.…”
Section: Current Status Of Researchmentioning
confidence: 99%