“…Nevertheless, there are also incontrovertible empirical findings from experimental committee voting games that committee voting processes do reach stopping points that are not merely random. And, when we look at real world data in situations where we can estimate the ideological location of both voters and observed outcomes, e.g., wrt to voting processes such as those in the U.S. Congress or the U.S. Supreme Court, we again find a far from random pattern of outcomes relative to the distribution of estimated legislator voter ideal points, Like Bianco et al (2004Bianco et al ( , 2006Bianco et al ( , 2008, Schofield (1993Schofield ( , 1995aSchofield ( , b, 1999 and earlier work such as Ferejohn et al (1984), we suggest that, even there is no core to the voting game, while all outcomes may be possible, some are more likely than others. In particular, as we shall see, the Shapley-Owen value, and insights derived from it about the underlying geometric structure of majority rule preferences, can aid us in identifying where outcomes of majority rule spatial voting games are most likely to be found.…”