The asymptotic Dirichlet‐to‐Neumann (D‐N) map is constructed for a class of scalar, constant coefficient, linear, third‐order, dispersive equations with asymptotically time/periodic Dirichlet boundary data and zero initial data on the half‐line, modeling a wavemaker acting upon an initially quiescent medium. The large time t asymptotics for the special cases of the linear Korteweg‐de Vries and linear Benjamin–Bona–Mahony (BBM) equations are obtained. The D‐N map is proven to be unique if and only if the radiation condition that selects the unique wave number branch of the dispersion relation for a sinusoidal, time‐dependent boundary condition holds: (i) for frequencies in a finite interval, the wave number is real and corresponds to positive group velocity, and (ii) for frequencies outside the interval, the wave number is complex with positive imaginary part. For fixed spatial location x, the corresponding asymptotic solution is (i) a traveling wave or (ii) a spatially decaying, time‐periodic wave. The linearized BBM asymptotics are found to quantitatively agree with viscous core‐annular fluid experiments.