Chronic post-surgical pain (CPSP) is a normal and significant symptom in clinical surgery, such as breast operation, biliary tract operation, cesarean operation, uterectomy and thoracic operation. Severe chronic post-surgical pain could increase post-surgical complications, including myocardial ischemia, respiratory insufficiency, pneumonia and thromboembolism. However, the underlying mechanism is still unknown. Herein, a rat CPSP model was produced via thoracotomy. After surgery, in an initial study, 5 out of 12 rats after surgery showed a significant decrease in mechanical withdrawal threshold and/or increase in the number of acetone-evoked responses, and therefore classified as the CPSP group. The remaining seven animals were classified as non-CPSP. Subsequently, open-chest operation was performed on another 30 rats and divided into CPSP and non-CPSP groups after 21-day observation. Protein expression levels in the dorsal spinal cord tissue were determined by 12.5 % SDS-PAGE. Finally, differently expressed proteins were identified by LC MS/MS and analyzed by MASCOT software, followed by Gene Ontology cluster analysis using PANTHER software. Compared with the non-CPSP group, 24 proteins were only expressed in the CPSP group and another 23 proteins expressed differentially between CPSP and non-CPSP group. Western blot further confirmed that the expression of glutaminase 1 (GLS1) was significantly higher in the CPSP than in the non-CPSP group. This study provided a new strategy to identify the spinal proteins, which may contribute to the development of chronic pain using differential proteomics, and suggested that GLS1 may serve as a potential biomarker for CPSP.