Abstract:Let G be a connected graph; the edge Mostar index Moe(G) of G is defined as Moe(G)=∑e=uv∈E(G)|mu(e)−mv(e)|, where mu(e) and mv(e) denote the number of edges in G that are closer to vertex u than to vertex v and the number of edges that are closer to vertex v than to vertex u, respectively. In this paper, we determine the upper bound of the edge Mostar index for all bicyclic graphs and identify the extremal graphs that achieve this bound.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.