The Neurospora crassa frequency locus encodes a 989 amino acid protein that is a central component, a state variable, of the circadian biological clock. We have determined the sequence of all or part of this protein and surrounding regulatory regions from additional fungi representing three genera and report that there is distinct, preferential conservation of the frequency open reading frame (ORF) as compared with non‐coding sequences. Within the coding region, many of the domain hallmarks of the N. crassa protein are highly conserved, especially an internal region bearing the causative mutations in frq1 and frq7, the most extreme alleles in the frequency allelic series. Despite considerable diversity among the strains analyzed in terms of morphology, growth, circadian clock output and frq sequence, the ORF from the most distantly related fungus included in this study (Sordaria fimicola) rescues rhythmicity in a N.crassa frequency null strain. Both sequence conservation, and the ability of frequency from a genus displaying one developmental program to complement circadian defects in a separate genus with a distinct, clock‐regulated developmental program, are consistent with a central role of the frequency gene product in a general circadian oscillator capable of controlling diverse outputs in a variety of systems.