Multiple sclerosis (MS) is an immune mediated, inflammatory and demyelinating disease of the central nervous system (CNS). Substantial evidence points toward monocytes and macrophages playing prominent roles early in disease, mediating both pro‐ and anti‐inflammatory responses. Monocytes are subdivided into three subsets depending on the expression of CD14 and CD16, representing different stages of inflammatory activation. To investigate their involvement in MS, peripheral blood mononuclear cells from 40 patients with incipient or progressed MS and 20 healthy controls were characterized ex vivo. In MS samples, we demonstrate a highly significant increase in nonclassical monocytes (CD14+CD16++), with a concomitant significant reduction in classical monocytes (CD14++CD16−) compared with healthy controls. Also, a significant reduction in the surface expression of CD40, CD163, and CD192 was found, attributable to the upregulation of the nonclassical monocytes. In addition, significantly increased levels of human endogenous retrovirus (HERV) envelope (Env) epitopes, encoded by both HERV‐H/F and HERV‐W, were specifically found on nonclassical monocytes from patients with MS; emphasizing their involvement in MS disease. In parallel, serum and cerebrospinal fluid (CSF) samples were analyzed for soluble biomarkers of inflammation and neurodegeneration. For sCD163 versus CD163, no significant correlations were found, whereas highly significant correlations between levels of soluble neopterine and the intermediate monocyte (CD14++CD16+) population was found, as were correlations between levels of soluble osteopontin and the HERV Env expression on nonclassical monocytes. The results from this study emphasize the relevance of further focus on monocyte subsets, particularly the nonclassical monocytes in monitoring of inflammatory diseases.