Reconstruction of zygomatic complex defects is a surgical challenge, owing to the accurate restoration of structural symmetry as well as facial projection. Generally, there are many available techniques for zygomatic reconstruction, but they hardly achieve aesthetic and functional properties. To our knowledge, there is no such study on zygomatic titanium bone reconstruction, which involves the complete steps from patient computed tomography scan to the fabrication of titanium zygomatic implant and evaluation of implant accuracy. The objective of this study is to propose an integrated system methodology for the reconstruction of complex zygomatic bony defects using titanium comprising several steps, right from the patient scan to implant fabrication while maintaining proper aesthetic and facial symmetry. The integrated system methodology involves computer-assisted implant design based on the patient computed tomography data, the implant fitting accuracy using three-dimensional comparison techniques, finite element analysis to investigate the biomechanical behavior under loading conditions, and finally titanium fabrication of the zygomatic implant using state-of-the-art electron beam melting technology. The resulting titanium implant has a superior aesthetic appearance and preferable biocompatibility. The customized mirrored implant accurately fit on the defective area and restored the tumor region with inconsequential inconsistency. Moreover, the outcome from the two-dimensional analysis provided a good accuracy within 2 mm as established through physical prototyping. Thus, the designed implant produced faultless fitting, favorable symmetry, and satisfying aesthetics. The simulation results also demonstrated the load resistant ability of the implant with max stress within 1.76 MPa. Certainly, the mirrored and electron beam melted titanium implant can be considered as the practical alternative for a bone substitute of complex zygomatic reconstruction.