The global coastal seascape offers a multitude of ecosystem functions and services to the natural and human-induced ecosystems. However, the current anthropogenic global warming above pre-industrial levels is inducing the degradation of seascape health with adverse impacts on biodiversity, economy, and societies. Bathymetric knowledge empowers our scientific, financial, and ecological understanding of the associated benefits, processes, and pressures to the coastal seascape. Here we leverage two commercial high-resolution multispectral satellite images of the Pleiades and two multibeam survey datasets to measure bathymetry in two zones (0–10 m and 10–30 m) in the tropical Anguilla and British Virgin Islands, northeast Caribbean. A methodological framework featuring a combination of an empirical linear transformation, cloud masking, sun-glint correction, and pseudo-invariant features allows spatially independent calibration and test of our satellite-derived bathymetry approach. The best R2 and RMSE for training and validation vary between 0.44–0.56 and 1.39–1.76 m, respectively, while minimum vertical errors are less than 1 m in the depth ranges of 7.8–10 and 11.6–18.4 m for the two explored zones. Given available field data, the present methodology could provide simple, time-efficient, and accurate spatio-temporal satellite-derived bathymetry intelligence in scientific and commercial tasks i.e., navigation, coastal habitat mapping and resource management, and reducing natural hazards.