Abstract:In the paper we propose a method based on Bayesian framework for selecting the best kernel function for supervised learning problem. The parameters of the kernel function are considered as model parameters and maximum evidence principle is applied for model selection. We describe a general scheme of Bayesian regularization, present model of kernel classifiers as well as our approximations for evidence estimation, and then give some results of experimental evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.