Fibroblasts functions in a new family of nanohybrid network elastomers with high strength‐at‐break involving pressure‐induced curing and short chain cross‐links of inorganic nanostructures have been investigated. The concept of chemical design and synthesis involves covalently linking nanometer‐sized titania with a bi‐functional agent, acrylic acid, which has a carboxylic group to coordinate with titania and a vinyl group to form short chain cross‐links as an integral part of the silicone network structure elastomer. Interestingly, the cell–substrate interactions in the hybrid network structure elastomer are significantly different from those observed in stand alone silicone. The origin of intriguing differences in cell–substrate interactions in terms of cell attachment, viability, and proliferation and assessment of proteins actin, vinculin, and fibronectin are addressed and attributed to physico‐chemical properties (topography and hydrophilicity) and to the presence of nanocrystalline titania. The end outcome of the study is a new family of soft tissue implants with desired (enhanced cell functions) and bulk properties (long term stability–high strength‐at‐break). The integration of cellular and molecular biology with material science and engineering described here provides an insight into the ability to modulate cellular and molecular reactions in promoting osteoinductive signaling of surface adherent cells, in the present case, fibroblasts for soft tissue reconstruction.