The Use of Boosted Regression Trees to Predict the Occurrence and Quantity of Staphylococcus aureus in Recreational Marine Waterways
Bridgette F. Froeschke,
Michelle Roux-Osovitz,
Margaret L. Baker
et al.
Abstract:Microbial monitoring in marine recreational waterways often overlooks environmental variables associated with pathogen occurrence. This study employs a predictive boosted regression trees (BRT) model to predict Staphylococcus aureus abundance in the Tampa Bay estuary and identify related environmental variables associated with the microbial pathogen’s occurrence. We provide evidence that the BRT model’s adaptability and ability to capture complex interactions among predictors make it invaluable for research on… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.