Through the application of the engineering paradigm of ‘design–build–test–learn’ allied to recent advances in DNA sequencing, bioinformatics and, critically, the falling cost of DNA synthesis, Synthetic Biology promises to make existing therapies more accessible and be at the centre of the development of new types of advanced therapies. As existing pharmaceutical companies integrate Synthetic Biology tools into their normal ways of working, existing products are being produced by cheaper and more sustainable methods. Vaccine design and production is becoming driven by the molecular design allied to rapidly scalable production methods to combat the threat of pandemics and the ability of pathogens to escape the immune system by mutation. Advanced therapies, such as chimeric antigen receptor T cell therapy, are able to capitalise on the tools of Synthetic Biology to design new proteins and molecular ‘kill switches’ as well as design scalable and effective vectors for cellular transduction. This review highlights how Synthetic Biology is having an impact across the various therapeutic modalities from existing products to new therapies.