Background: The aim of this study is to elucidate the spectrum of commonly encountered anomalies affecting fetal genito-urinary system (GUS) on fetal MRI and examine its utility in providing better morphological information resulting in improved diagnostic accuracy and in detecting additional malformations. The study also aims to highlight the promising role of fetal MRI in the detection and characterization of renal fusion anomalies like the horseshoe kidney or developmental abnormalities such as renal agenesis/ectopia. Results: The mean age of study participants was 29 years ± 3 years. The gestation age of pregnant mothers ranged from 18 weeks and 1 day to 39 weeks and 0 day. Amniotic fluid was reduced or absent in 41% (N = 13) and normal in 59% (N = 18) of participating mothers. Overall, urinary obstruction was the commonest anomaly encountered (29%) followed by the multicystic dysplastic kidney (MCDK) (22%). Bilateral renal disease was seen in all mothers having features of anhydramnios {B/L MCDK (N = 3), autosomal recessive polycystic kidney disease (ARPKD) (N = 2), posterior urethral valves (PUV) (N = 2), B/L renal agenesis (N = 3), and megacystis (N = 1)}. Fusion anomalies (horseshoe kidney) and rotation anomaly (malrotation) were detected in one case each. Additional extrarenal findings were seen on fetal MRI in 35% (N = 11) cases. Conclusions: Fetal MRI improves diagnostic accuracy in anomalies affecting the fetal kidney and genito-urinary systems by better morphological delineation. It has the ability to detect additional extra-renal malformations and perform a more accurate assessment of associated pulmonary hypoplasia. The diffusion-weighted sequence is particularly useful in confirming the diagnosis of renal agenesis/ectopia.