The management of periodontal tissue defects that result from periodontitis represents a medical and socioeconomic challenge. Concerted efforts have been and still are being made to accelerate and augment periodontal tissue and bone regeneration, including a range of regenerative surgical procedures, the development of a variety of grafting materials, and the use of recombinant growth factors. More recently, tissue-engineering strategies, including new cell- and/or matrix-based dimensions, are also being developed, analyzed, and employed for periodontal regenerative therapies. Tissue engineering in periodontology applies the principles of engineering and life sciences toward the development of biological techniques that can restore lost alveolar bone, periodontal ligament, and root cementum. It is based on an understanding of the role of periodontal formation and aims to grow new functional tissues rather than to build new replacements of periodontium. Although tissue engineering has merged to create more opportunities for predictable and optimal periodontal tissue regeneration, the technique and design for preclinical and clinical studies remain in their early stages. To date, the reconstruction of small- to moderate-sized periodontal bone defects using engineered cell-scaffold constructs is technically feasible, and some of the currently developed concepts may represent alternatives for certain ideal clinical scenarios. However, the predictable reconstruction of the normal structure and functionality of a tooth-supporting apparatus remains challenging. This review summarizes current regenerative procedures for periodontal healing and regeneration and explores their progress and difficulties in clinical practice, with particular emphasis placed upon current challenges and future possibilities associated with tissue-engineering strategies in periodontal regenerative medicine.