Alkali-activated binders have the potential to consume various types of waste materials. Low initial molar ratios of SiO2/Al2O3 geopolymer mortars were considered in this article. Here we studied alkali-activated cement paste produced with photovoltaic glass powder in 5%; kaolin clay in 15%; ground granulated blast furnace slag in 30%; alumina-lime cement in 30%; and, interchangeably, fly ash from coal combustion in 5%, fly ash from biomass combustion in 5%, or granulated autoclaved cellular concrete in 5%. The influence of clay dehydroxylation, curing conditions, glass presence, and a kind of waste material was investigated. According to the experimental results, strength (compressive and tensile) gradually increased with increasing time and with the use of calcined clay. Significant improvement in compressive strength was seen with the additional 3 days curing time in 105 °C when non-sintered clay was used. The presence of photovoltaic glass in alkali-activated mortars immobilised mercury and arsenic but released zinc, chromium, and sulphates. The microscopic observations confirmed the greater densification of the microstructure of the binder made of calcined clay due to its greater surface development and dehydroxylation. The binder of non-calcined clay was granular, and the interfacial transitional zone was more porous. The C–A–S–H gel seemed to be the main phase. XRD examination confirmed the presence of C–A–S–H, C–S–H, zeolites, and many other phases in minor amount. The presented research was a pilot study, and its main goal was to develop it further.