Substantial declines of anadromous Atlantic Salmon Salmo salar have occurred throughout its range, with many populations at the southern extent of the distribution currently extirpated or endangered. While both one sea winter (1SW) and two sea winter (2SW) spawner numbers for the North American stocks have declined since the 1950s, the decline has been most severe in 2SW spawners. The first months at sea are considered a period of high mortality. However, early ocean mortality alone cannot explain the more pronounced decline of 2SW spawners, suggesting that the second year at sea may be more critical than previously thought. Atlantic Salmon scales collected by anglers and the state agency from 1946 to 2013 from five rivers in eastern Maine were used to estimate smolt age and ocean age of returning adults. Additionally, seasonal growth rates of maiden 2SW spawners were estimated using intercirculi measurements and linear back‐calculation methods. Generalized linear mixed models (Gaussian family, log link function) were used to investigate the influence of average sea surface temperature, accumulated thermal units, the Atlantic Multidecadal Oscillation (AMO) and North Atlantic Oscillation indices, smolt age, smolt length, postsmolt growth, and river of origin on growth rate during the oceanic migration of North American Atlantic Salmon. Results suggest that different factors influence salmon growth throughout their oceanic migration, and previous growth can be a strong predictor of future size. Growth was negatively impacted by the phase of the AMO, which has been linked to salmon abundance trends, in early spring following the postsmolt period. This is likely when the 1SW and 2SW stock components separate, and our results suggest that this period may be of interest in future work examining the disproportionate decline in 2SW spawners.