Inosine 5'-monophosphate dehydrogenase type II (IMPDH2) is an important enzyme involved in the biosynthesis of guanine nucleotides. Therefore, the present study aimed to investigate the potential and molecular mechanism of IMPDH2 in non-small cell lung cancer (NSCLC). Reverse transcription-quantitative PCR and immunohistochemistry were used to detect IMPDH2 expression levels in NSCLC tissues and cells. A Cell Counting Kit-8 assay, colony formation assay, flow cytometry, wound healing, Transwell assay, western blotting and immunofluorescence analyses were utilized to identify the effects of upregulated IMPDH2 levels on NSCLC cells. The expression levels of IMPDH2 have been discovered to be upregulated in several types of human cancer; however, the biological and clinical value of IMPDH2 in NSCLC remains unclear. The results of the present study revealed that the expression levels of IMPDH2 were significantly upregulated in NSCLC tissues. Furthermore, the genetic knockdown of IMPDH2 significantly hindered the proliferation, apoptosis, invasion, migration and epithelial-mesenchymal transition of NSCLC cells, whereas the overexpression of IMPDH2 achieved the opposite results. In addition, the results of the present study demonstrated that the inhibition of IMPDH2 inhibited the Wnt/β-catenin signaling pathway by decreasing the expression levels of Wnt3a and β-catenin, while increasing the expression levels of phosphorylated glycogen synthase kinase-3β in NSCLC cells. These findings of the present study indicated that IMPDH2 may promote NSCLC progression by activating the Wnt/β-catenin signaling pathway, which suggested that IMPDH2 may be a novel therapeutic target for patients with NSCLC.