Governments across the world rely on their Customs Administration to provide functions that include border security, intellectual property rights protection, environmental protection, and revenue mobilisation amongst others. Analyzing the trends in revenue being collected from Customs is necessary to direct government policies and decisions. Models that can capture the trends being purported from the nominal (nonreal) tax values with respect to the trade volumes (value) over the period are indispensable. Predominant amongst the existing models are the econometric models (the GDP-based model, the monthly receipts model, and the microsimulation model), which are laborious and sometimes unreliable when studying trends in time series data. In this study, we modelled monthly revenue data obtained from the Ghana Revenue Authority-Customs Division (GRA-CD) for the period January 2010 to December 2019 using two traditional time series models, ARIMA model and ARIMA Error Regression Model (ARIMAX), and two machine learning time series models, Bayesian Structural Time Series (BSTS) model and a Neural Network Autoregression model. The Neural Network Autoregression model of the form NNAR (1, 3) provided the best forecasts with the least Mean Squared Error (MSE) of 53.87 and relatively lower Mean Absolute Percentage Error (MAPE) of 0.08. Generally, the machine learning models (NNAR (1, 3) and BSTS) outperformed the traditional time series models (ARIMA and ARIMAX models). The forecast values from the NNAR (1, 3) indicated a potential decline in revenue and this emphasizes the need for relevant authorities to institute measures to improve revenue generation in the immediate future.