The accurate transformation of multi-camera 2D coordinates into 3D coordinates is critical for applications like animation, gaming, and medical rehabilitation. This study unveils an enhanced multi-camera calibration method that alleviates the shortcomings of existing approaches by incorporating a comprehensive cost function and Adaptive Iteratively Reweighted Least Squares (AIRLS) optimization. By integrating static error components (3D coordinate, distance, angle, and reprojection errors) with dynamic wand distance errors, the proposed comprehensive cost function facilitates precise multi-camera parameter calculations. The AIRLS optimization effectively balances the optimization of both static and dynamic error elements, enhancing the calibration’s robustness and efficiency. Comparative validation against advanced multi-camera calibration methods shows this method’s superior accuracy (average error 0.27 ± 0.22 mm) and robustness. Evaluation metrics including average distance error, standard deviation, and range (minimum and maximum) of errors, complemented by statistical analysis using ANOVA and post-hoc tests, underscore its efficacy. The method markedly enhances the accuracy of calculating intrinsic, extrinsic, and distortion parameters, proving highly effective for precise 3D reconstruction in diverse applications. This study represents substantial progression in multi-camera calibration, offering a dependable and efficient solution for intricate calibration challenges.