Individual-level characteristics, including socioeconomic status, have been associated with poor metabolic and cardiovascular health; however, residential area-level characteristics may also independently contribute to health status. In the current study, we used hierarchical clustering to aggregate 444 US Census block groups in Durham, Orange, and Wake Counties, NC, USA into six homogeneous clusters of similar characteristics based on 12 demographic factors. We assigned 2254 cardiac catheterization patients to these clusters based on residence at first catheterization. After controlling for individual age, sex, smoking status, and race, there were elevated odds of patients being obese (odds ratio (OR) = 1.92, 95% confidence intervals (CI) = 1.39, 2.67), and having diabetes (OR = 2.19, 95% CI = 1.57, 3.04), congestive heart failure (OR = 1.99, 95% CI = 1.39, 2.83), and hypertension (OR = 2.05, 95% CI = 1.38, 3.11) in a cluster that was urban, impoverished, and unemployed, compared with a cluster that was urban with a low percentage of people that were impoverished or unemployed. Our findings demonstrate the feasibility of applying hierarchical clustering to an assessment of area-level characteristics and that living in impoverished, urban residential clusters may have an adverse impact on health.