Van den, P. M. J. (2009). Order and structural dependence selection of LPV-ARX models using a nonnegative Garrote approach. In Proceedings of the 48th IEEE Conference on Decision and Control (CDC 2009), 16-18 December 2009 Please check the document version of this publication:• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. Abstract-In order to accurately identify Linear ParameterVarying (LPV) systems, order selection of LPV linear regression models has prime importance. Existing identification approaches in this context suffer from the drawback that a set of functional dependencies needs to be chosen a priori for the parametrization of the model coefficients. However in a black-box setting, it has not been possible so far to decide which functions from a given set are required for the parametrization and which are not. To provide a practical solution, a nonnegative garrote approach is applied. It is shown that using only a measured data record of the plant, both the order selection and the selection of structural coefficient dependence can be solved by the proposed method.