2024
DOI: 10.2478/amns-2024-1270
|View full text |Cite
|
Sign up to set email alerts
|

The use of power information technology in fault diagnosis of electrical equipment

Baozhen Feng

Abstract: As the electric power industry rapidly advances, diagnosing faults in electrical equipment has emerged as a critical challenge. In this study, we leverage advancements in power information technology to develop a method for extracting feature volumes, incorporating multiple characteristics to address mixed faults. Our approach begins with the application of a Backpropagation (BP) neural network to extract fault features from electrical equipment. Subsequently, we employ a Bayesian-optimized Correlation Vector … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 22 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?