A detrimental perceptive consequence of damaged auditory sensory hair cells consists in a pronounced masking effect exerted by low-frequency sounds, thought to occur when auditory threshold elevation substantially exceeds 40 dB. Here, we identified the submembrane scaffold protein Nherf1 as a hair-bundle component of the differentiating outer hair cells (OHCs). Nherf1 −/− mice displayed OHC hair-bundle shape anomalies in the mid and basal cochlea, normally tuned to mid-and high-frequency tones, and mild (22-35 dB) hearing-threshold elevations restricted to midhigh sound frequencies. This mild decrease in hearing sensitivity was, however, discordant with almost nonresponding OHCs at the cochlear base as assessed by distortion-product otoacoustic emissions and cochlear microphonic potentials. Moreover, unlike wild-type mice, responses of Nherf1 −/− mice to high-frequency (20-40 kHz) test tones were not masked by tones of neighboring frequencies. Instead, efficient maskers were characterized by their frequencies up to two octaves below the probe-tone frequency, unusually low intensities up to 25 dB below probe-tone level, and growth-ofmasker slope (2.2 dB/dB) reflecting their compressive amplification. Together, these properties do not fit the current acknowledged features of a hypersensitivity of the basal cochlea to lower frequencies, but rather suggest a previously unidentified mechanism. Low-frequency maskers, we propose, may interact within the unaffected cochlear apical region with midhigh frequency sounds propagated there via a mode possibly using the persistent contact of misshaped OHC hair bundles with the tectorial membrane. Our findings thus reveal a source of misleading interpretations of hearing thresholds and of hypervulnerability to low-frequency sound interference.off-frequency detection | Usher syndrome | hearing impairment | Nherf2 | tail hypersensitivity M ammalian hearing displays remarkable sensitivity, fine temporal acuity, and exquisite frequency selectivity, which contribute to auditory scene analysis and speech intelligibility. The first steps of sound processing, i.e., sound wave detection and neuronal encoding in the cochlea, are performed by two populations of hair cells, the inner hair cells (IHCs) and the outer hair cells (OHCs). These cells are sandwiched between the underlying basilar membrane (BM) and the overlying tectorial membrane (TM) (SI Appendix, Fig. S1A). IHCs are the genuine sensory cells that transduce the sound stimuli into electrical signals in the primary auditory neurons. OHCs are mechanical effectors that amplify the sound-evoked movements of the cochlear partition, sharpen its frequency selectivity, and produce waveform distortions (1, 2). A pure-tone stimulus entering the cochlea elicits a traveling wave that propagates along the BM from the cochlear base toward its apex, increasing in amplitude until it peaks at a characteristic place, where the mechanical properties of the cochlea are best tuned to the stimulus frequency. Beyond this characteristic place, the ampl...