The co-processing of active pharmaceutical ingredient (API) with an excipient which has a high glass transition temperature (Tg) is a recognised strategy to stabilise the amorphous form of a drug. This work investigates whether co-processing a model API, sulfadimidine (SDM) with a series of low Tg excipients prevents or reduces amorphisation of the crystalline drug. It was hypothesised that these excipients could exert a Tg lowering effect, resulting in composite Tg values lower than that of the API alone and promote crystallisation of the drug. Milled SDM and co-milled SDM with glutaric acid (GA), adipic acid (AA), succinic acid (SA) and malic acid (MA) were characterised with respect to their thermal, X-Ray diffraction, spectroscopic and vapour sorption properties.SDM was predominantly amorphous when milled alone, with an amorphous content of 82 %.No amorphous content was detected by dynamic vapour sorption (DVS) on co-milling SDM with 50 % w/w GA, and amorphous content of the API was reduced by almost 30 %, relative to the API milled alone, on co-milling with 50 % w/w AA. In contrast, amorphisation of SDM was promoted on co-milling with 50 % w/w SA and MA, as indicated by near infrared (NIR) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 2 spectroscopy. Results indicated that the API was completely amorphised in the SDM:MA comilled composite.The saturated solubility of GA and AA in the amorphous API was estimated by thermal methods.It was observed that the Tg of the co-melt quenched composites reached a minimum and levelled out at this solubility concentration. Maximum crystallinity of API on co-milling was reached at excipient concentrations comparable to the saturated concentration solubility of excipient in the API. Moreover, the closer the Hildebrand solubility parameter of the excipient to the API, the greater was the inhibition of API amorphisation on co-milling.The results reported here indicate that an excipient with a low Tg coupled with high solubility in the API can prevent or reduce the generation of an amorphous phase on co-milling.