To investigate the effects of short-term fasting on spontaneous activity and excess post-exercise oxygen consumption (EPOC) in sit-and-wait carnivorous southern catfish (Silurus meridionalis), active carnivorous black carp (Mylopharyngodon piceus), active herbivorous grass carp (Ctenopharyngodon idellus) and active filter-feeding silver carp (Hypophthalmichthys molitrix), each species was divided into a control group and a fasting group (deprived of food for 14 days). Both groups were maintained at 25°C and, at the end of the experimental period, the total movement distance (TMD), percent time spent moving (PTM), ventilation frequency (Vf), pre-exercise oxygen consumption (M(•)O2) and EPOC response of the experimental fish were measured. The TMD and PTM obtained for the control group of southern catfish were lower than those found for the control groups of the three active species. Short-term fasting resulted in decreases in the TMD and PTM of the southern catfish and black carp and increases in the TMD of grass carp and silver carp. The Vf of southern catfish was significantly higher than those of grass carp and silver carp, whereas the latter was also significantly higher than that of black carp. Short-term fasting resulted in significant increases in the Vf and decreases in the pre-exercise M(•)O2 of southern catfish and silver carp. Southern catfish and black carp exhibited lower peak post-exercise M(•)O2 and recovery rates, and relatively higher EPOC magnitudes than grass carp and silver carp. Short-term fasting exerted no significant effects on the peak post-exercise M(•)O2, but resulted in relatively higher EPOC magnitudes in the four fish species. These results suggest that (1) different fish species exhibit significantly different levels of spontaneous activity and post-exercise M(•)O2 profiles with different characteristics and that (2) short-term fasting exerts different effects on the level of spontaneous activity in four fish species with different foraging strategies.