2019
DOI: 10.14529/mmp190308
|View full text |Cite
|
Sign up to set email alerts
|

The Use of the Direct Sum Decomposition Algorithm for Analyzing the Strength of Some Mceliece Type Cryptosystems

Abstract: исследовательский институт ≪ Специализированные вычислительные устройства защиты и автоматика ≫ , г. Ростов-на-Дону, Российская Федерация Строится полиномиальный алгоритм разложения произвольного линейного кода C в прямую сумму неразложимых подкодов с попарно непересекающимися носителями. В основе построенного алгоритма лежит нахождение базиса линейного кода, состоящего из минимальных кодовых векторов, то есть таких векторов, носители которых не содержатся в носителях других кодовых векторов этого линейного ко… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0

Year Published

2019
2019
2020
2020

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(7 citation statements)
references
References 12 publications
0
7
0
Order By: Relevance
“…In [13] it is shown that the analysis of McEliece-type system on the direct sum of codes can be reduced to the analysis of McEliece-type systems on the summands. In this paper, we have shown that the analysis of Sidel'nikov-type systems can also be reduced to the analysis of McEliece-type systems in some cases.…”
Section: Resultsmentioning
confidence: 99%
See 4 more Smart Citations
“…In [13] it is shown that the analysis of McEliece-type system on the direct sum of codes can be reduced to the analysis of McEliece-type systems on the summands. In this paper, we have shown that the analysis of Sidel'nikov-type systems can also be reduced to the analysis of McEliece-type systems in some cases.…”
Section: Resultsmentioning
confidence: 99%
“…It is said that the code C is decomposable if this code is permutably equivalent to the direct sum of two or more nontrivial codes [21]. The code C is called a decomposable code with decomposition length u if it can be represented as the direct sum of u codes by the permutation of coordinates (see ( 10)) [13]. If in the decomposition (10) all codes C i are indecomposable, then such decomposition will be called complete.…”
Section: Decomposition Of Linear Codesmentioning
confidence: 99%
See 3 more Smart Citations