As global salmon production accelerates in response to higher consumer demand for seafood, so does the need for sophisticated monitoring strategies to enable and maintain ethically sound, productive, and environmentally friendly production of fish. Innovative technologies are needed to ensure proper water quality, react to unfavorable hydrodynamic conditions, monitor for changes in fish health, and minimize ecological interactions with indigenous aquatic life, including fish escapes. Automated sensors connected wirelessly to data stations, visualization aids, and acoustic and physical tagging technologies are emerging tools capable of detecting environmental stress and its associated behavioral changes in farmed fish. Computer modeling of the monitoring data collected from a single salmon farm or collection of farms sharing a data network can be used to spot environmental trends vital for anticipating some of the consequences of climate change. Environmental regulations governing salmon farming in coastal areas are becoming more stringent in response to public pressures to protect coastal and ocean resources and to provide for multipurpose use of marine resources. As net‐pen salmon aquaculture expands globally, new technologies will be essential to collect and interpret the anticipated larger volumes of data needed to meet these stringent regulatory requirements and to safeguard the high investment costs inherent in salmon farming. Integr Environ Assess Manag 2022;18:950–963. © SETAC