We study the problem of data disclosure with privacy guarantees, wherein the utility of the disclosed data is ensured via a hard distortion constraint. Unlike average distortion, hard distortion provides a deterministic guarantee of fidelity. For the privacy measure, we use a tunable information leakage measure, namely maximal α-leakage (α ∈ [1, ∞]), and formulate the privacy-utility tradeoff problem. The resulting solution highlights that under a hard distortion constraint, the nature of the solution remains unchanged for both local and nonlocal privacy requirements. More precisely, we show that both the optimal mechanism and the optimal tradeoff are invariant for any α > 1; i.e., the tunable leakage measure only behaves as either of the two extrema, i.e., mutual information for α = 1 and maximal leakage for α = ∞.