Radiology 2019; 00:1-11 • https://doi.org/10.1148/radiol.2019182510 • Content code:Background: Various techniques are available to assess diffusion properties of breast lesions as a marker of malignancy at MRI. The diagnostic performance of these diffusion markers has not been comprehensively assessed.
Purpose:To compare by meta-analysis the diagnostic performance of parameters from diffusion-weighted imaging (DWI), diffusion-tensor imaging (DTI), and intravoxel incoherent motion (IVIM) in the differential diagnosis of malignant and benign breast lesions.
Materials and Methods:PubMed and Embase databases were searched from January to March 2018 for studies in English that assessed the diagnostic performance of DWI, DTI, and IVIM in the breast. Studies were reviewed according to eligibility and exclusion criteria. Publication bias and heterogeneity between studies were assessed. Pooled summary estimates for sensitivity, specificity, and area under the curve were obtained for each parameter by using a bivariate model. A subanalysis investigated the effect of MRI parameters on diagnostic performance by using a Student t test or a one-way analysis of variance.
Results:From 73 eligible studies, 6791 lesions (3930 malignant and 2861 benign) were included. Publication bias was evident for studies that evaluated apparent diffusion coefficient (ADC). Significant heterogeneity (P , .05) was present for all parameters except the perfusion fraction (f ). The pooled sensitivity, specificity, and area under the curve for ADC was 89%, 82%, and 0.92, respectively. The highest performing parameter for DTI was the prime diffusion coefficient (l 1 ), and pooled sensitivity, specificity, and area under the curve was 93%, 90%, and 0.94, respectively. The highest performing parameter for IVIM was tissue diffusivity (D), and the pooled sensitivity, specificity, and area under the curve was 88%, 79%, and 0.90. Choice of MRI parameters had no significant effect on diagnostic performance.
Conclusion:Diffusion-weighted imaging, diffusion-tensor imaging, and intravoxel incoherent motion have comparable diagnostic accuracy with high sensitivity and specificity. Intravoxel incoherent motion is comparable to apparent diffusion coefficient. Diffusion-tensor imaging is potentially promising but to date the number of studies is limited.