The treatment of industrial coke wastewater was studied in a laboratory-scale activated sludge system. The concentrations of the main pollutants in the wastewater ranged between 800 and 1870 mg COD/l, 100-221 mg phenols/l, 198-427 mg SCN/l, 133-348 mg NH þ 4 À N=l and 11-41 mg CN − /l. To avoid inhibition phenomena resulting from the high concentrations of thiocyanate, ammonium nitrogen and cyanide a three-step process was implemented. The first step was anoxic for the removal of nitrates, followed by an oxic step during which biodegradation of phenols and thiocyanates took place, and by a second oxic step to oxidize ammonium nitrogen to nitrate. The dilution effect due to the recirculation of the final effluent to the head of the process and also, the separation of the nitrification step from the biodegradation of thiocyanate led to much higher efficiencies than when the process was carried out simultaneously. Very high removals were obtained (99% phenols, 97% SCN − , 63% COD, 98% NH þ 4 À N, 90% total-N and 99% cyanide) employing hydraulic residence times of 15.4 h for denitrification, 98 h for phenol and thiocyanate biodegradation and 86 h for nitrification.