fax 01-972-952-9435.
AbstractThis paper presents a brief review of the available techniques in the oil and gas industry to complete and stimulate horizontal wells, with emphasis on low permeability carbonates. These techniques can also be applied in non-conventional reservoirs, particularly in tight formations. The paper starts by reviewing the lessons learned in some chalk fields in the North Sea (Dan, Halfdan, South Arne, Valhall and Eldfisk) and in a few pilot projects offshore Brazil (Congro and Enchova). Based on these lessons learned and in the broad literature, the paper devises some considerations on the methodology to select completion and stimulation techniques for horizontal wells. Cased and cemented horizontal wells, in addition to open hole and perforated/slotted liners wells are addressed. The macro aspects of field/area management are stressed as the completion and stimulation drivers. The key parameters for designing, implementing and evaluating horizontal completion and stimulation are presented, emphasizing the most common failures and the controversial aspects. The paper presents a summary of mature field and new scenarios that are candidate to horizontal completion and stimulation in Brazil and other Latin America countries. Then it makes a few comments on the resources available in Latin America to face the mentioned opportunities and related challenges. It is supposed that this brief review will be useful for the low permeability scenarios in Latin America and worldwide.
Completion and Stimulation of North Sea Low-Permeability CarbonatesThe North Sea low permeability chalks are taken here as a reference due to the outstanding technological evolution verified there in the last decades. Amongst more than ten fields producing from these reservoirs in the North Sea this paper focuses on the Dan, Halfdan, South Arne, Valhall and Eldfisk fields. The main characteristics of these fields are: shallow waters (43 to 69 m), dry completion, high volumes of OOIP (1.6 to 2.9 billions barrel), low permeability carbonates (0.2 md to 10 md) with microfractures in the central areas (10 md to 120 md), high porosities (up to 48%), soft to very soft chalks, small to medium net pays (15 m to 65 m), high oil saturation (up to 97%), and light oils ( about 36 o API). What most distinguishes these fields is their over-pressured soft chalks which are subjected to a high degree of compaction under pore pressure depletion, resulting in loss of drilling fluids, rapid production decline, well failures and seafloor subsidence. On the other hand the positive effects of rock compaction as a reservoir drive energy, outweigh by far the negative ones. The recovery factor under primary recovery can be as high as 30%. In general the North Sea chalks experienced an evolution from vertical/directional wells stimulated with acid treatments to multiple fractured horizontal wells.