Thrombolysis with intravenous alteplase (recombinant tissue-type plasminogen activator) continues to be the sole recourse for acute ischemic stroke therapy, provided that patients seek treatment preferably within 3 h of stroke onset. The narrow window of efficacy, coupled with the significant risk of hemorrhage and the high mortality rate, preclude the use of alteplase beyond this time frame. Moreover, in part because of safety concerns, only a small percentage (6-15%) of eligible patients is treated with alteplase. Clearly, safer and more effective treatments that focus on improving the shortcomings of the present thrombolysis for stroke need to be identified. Therefore, newer thrombolytics are being developed with the goal of minimizing side effects, while also shortening the time of cerebral reperfusion and extending the therapeutic window of efficacy. Besides thrombolytics, new and potentially useful drugs and devices are also being studied either as monotherapeutic agents or for use in conjunction with alteplase. In animal models of stroke, neuroprotective agents that affect various components of the ischemic injury cascade that results in neurodegeneration have shown promise for the latter. Examples of such agents include spin traps that block oxidative stress, metalloprotease inhibitors that prevent vascular damage, anti-inflammatory drugs that suppress inflammation and transcranial infrared laser irradiation, which promotes recovery of function. Ideally, a successful combination of neuroprotectant (drug or device) and thrombolytic therapy for stroke would minimize the side effects of thrombolysis followed by supplementary neuroprotection thereafter.