In this paper, we first introduce the notion and model of generalized minimax regret equilibria with scalar set payoffs. After that, we study its general stability theorem under the conditions that the existence theorem of generalized minimax regret equilibrium point with scalar set payoffs holds. In other words, when the scalar set payoffs functions and feasible constraint mappings are slightly disturbed, by using Fort theorem and continuity results of set-valued mapping optimal value functions, we obtain a general stability theorem for generalized minimax regret equilibria with scalar set payoffs. At the same time, an example is given to illustrate our result.