Multiple studies suggest that chronic stress accelerates the growth of existing tumors by activating the sympathetic nervous system. Data suggest that sustained adrenergic signaling can induce tumor growth, secretion of pro-inflammatory cytokines, and macrophage infiltration. Our goal was to study the role of adrenergic-stimulated macrophages in ovarian cancer biology. Cytokine arrays were used to assess the effect of adrenergic stimulation in pro-tumoral cytokine networks. An orthotopic model of ovarian cancer was used to assess the in vivo effect of daily restraint stress on tumor growth and adrenergic-induced macrophages. Cytokine analyses showed that adrenergic stimulation modulated pro-inflammatory cytokine secretion in a SKOV3ip1 ovarian cancer cell/U937 macrophage co-culture system. Among these, platelet-derived growth factor AA (PDGF-AA), epithelial cell-derived neutrophil-activating peptide (ENA-78), Angiogenin, vascular endothelial growth factor (VEGF), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-5 (IL-5), Lipocalin-2, macrophage migration inhibitory factor (MIF), and transferrin receptor (TfR) were upregulated. Enriched biological processes included cytokine-mediated signaling pathways and positive regulation of cell proliferation. In addition, daily restraint stress increased ovarian cancer growth, infiltration of CD68+ macrophages, and expression of PDGF-AA in orthotopic models of ovarian cancer (SKOV3ip1 and HeyT30), while zoledronic acid, a macrophage-depleting agent, abrogated this effect. Furthermore, in ovarian cancer patients, high PDGFA expression correlated with worse outcomes. Here, it is shown that the adrenergic regulation of macrophages and PDGFA might play a role in ovarian cancer progression.